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List of Original Articles 
This thesis is based on the following article, which will be referred to in the text by their Roman 

numerals: 

 

I. Teruhisa Watase, Yasuhiro Omiya, Shinichi Tokuno 

Severity classification using Dynamic Time Warping-Based voice biomarkers for patients 

with COVID-19: Feasibility Cross-sectional Study 

JMIR Biomedical Engineering 2023, 8: e50924, doi:10.2196/50924 

  
I Introduction 
I-1 Background 

The coronavirus disease 2019 (COVID-19) originated in Wuhan, China, in December 2019 and 

escalated into a global pandemic. By December 2022, approximately 650 million individuals had been 

infected by this disease, resulting in the tragic loss of more than 6.64 million lives. Although new 

infections appeared to have abated in the spring of 2023, the past explosion of infections strained 

medical care systems in several countries. In coping with this pressure, these countries have changed 

their responses toward infected patients based on the severity of their illness. In Japan, as illustrated 

in Table 1, displaying the Ministry of Health, Labour and Welfare guidelines on the severity of 

COVID-19 [1], responses were categorized into four levels of severity, spanning from mild to serious 

illness. Mild illness is characterized by “an oxygen saturation of 96% or higher, or the absence of 

respiratory symptoms or coughing without experiencing shortness of breath (SoB) with no sign of 

pneumonia in either scenario.” Conversely, moderate illness I is categorized by “an oxygen saturation 

greater than 93% but less than 96%, or the presence of shortness of breath or pneumonia in the clinical 

https://doi.org/10.2196/50924
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condition.” Moderate illness II is described as “having an oxygen saturation of 93% or lower, or 

necessitating oxygen administration.” The target population for this study was individuals recovering 

at home or in recuperation facilities. Therefore, they were theoretically patients with mild illness. 

Nonetheless, due to worsening conditions or shortcomings of medical services, this population 

included patients with moderate illness I who should have been treated in a hospital. Therefore, 

accurately classifying these two adjacent severity categories (mild illness and moderate illness I) is 

essential in determining appropriate measures, such as early hospitalization, by detecting worsening 

conditions in patients with mild illness. 

 

Table 1. Definition of the Severity of Covid-19 Infections 

Severity Oxygen Saturation Clinical Conditions 

Mild illness SpO2 ≧ 96% No respiratory symptoms or coughing 

without shortness of breath, but no evidence 

of pneumonia in either case 

Moderate illness I 93% < SpO2 < 96% 
Shortness of breath and pneumonia are 

visible 

Moderate illness II SpO2 ≦ 93% Requires oxygen administration 

Serious illness --- Admitted to ICU or requires a ventilator 

 

Oxygen saturation (SpO2) measurements using a pulse oximeter were crucial for assessing the severity 
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of illness. Daily measurements of SpO2 and body temperature, along with the assessment of physical 

conditions, were essential for monitoring disease progression from mild illness to moderate illness I 

over approximately 1 week or more during the recuperation period. However, the explosive increase 

of patients with COVID-19 made it challenging to distribute pulse oximeters to all patients with mild 

illness. In particular, it was more problematic for young patients who had to recuperate at their homes 

rather than in healthcare facilities. This unexpected shortage of pulse oximeters has motivated us to 

devise alternative and cost-effective ways to monitor for worsening medical conditions in persons 

exhibiting mild illness. Notably, all pulse oximeters supplied by Kanagawa prefecture were an 

identical model. 

 

I-2. Voice Biomarkers 

Previous research on Parkinson’s disease, Alzheimer’s disease, depression, and other psychiatric 

disorders such as stress [2-12] has shown that voice biomarkers can be leveraged. Specifically, they 

can be leveraged to noninvasively and cost-effectively identify the presence or absence of diseases, 

classify symptoms, and monitor conditions. Voice biomarkers could also be an alternative method to 

detect changes in disease severity from mild illness to moderate illness I in COVID-19. COVID-19 is 

a respiratory disease that has been reported to cause acoustic oscillations in the voice due to 

inflammation of the pharynx in the vocal tract, vocal cords, or both, and a lower expiratory volume 
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due to pneumonia [13]. Moreover, significant differences in jitter (fluctuation of the fundamental 

frequency on the time axis), shimmer (fluctuation of the amplitude on the power axis), and harmonic-

to-noise ratio (HNR) were reported between healthy participants and those with COVID-19 [13-16]. 

Some reports state that COVID-19 can be detected from acoustic data obtained from a patient’s cough 

[17]. 

 

I-3. Dynamic Time Warping Distance  

Dynamic time warping (DTW) is a practical algorithm for measuring the similarity between two 

patterns. The DTW distance, a computational result obtained by the DTW algorithm using two 

waveform features, progressively approaches zero as the features become more similar. In contrast, it 

increases as the features become less similar (Figure 1).  

 

 
Figure 1. Illustration of the DTW distance, with three target example waves against a reference wave. 
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This metric has been widely used since the 1980s in motion recognition, speech recognition, and time-

series data analysis [18-26]. For example, DTW could differentiate between healthy people and people 

with walking disabilities with high accuracy by processing differences in the gait patterns acquired by 

accelerometer sensors on smartphones [18]. The effectiveness of an automated scoring system applied 

in conjunction with the DTW algorithm for evaluating the progress of speech audiometric 

rehabilitation was similar to that of conventional manual scoring methods [23]. It has also been 

reported that complementing the mel-frequency cepstral coefficient (MFCC) algorithm with the DTW 

algorithm improved voice recognition performance. The DTW algorithm has been introduced as a 

feature-matching technique for voice recognition [25]. The feature-matching implementation of the 

DTW algorithm (i.e., the scoring method for 2D feature similarity) may function effectively for the 

desired classification of long vowel samples. 

 

I-4. Mahalanobis Distance 

In the process of some promising DTW distance-based indices, we added another algorithm of 

Mahalanobis Distance (MD) with the concept of Normal Space (NS) and thresholding to detect any 

latent implausible observation data that may exist in arbitrary observation data to be classified in this 

study. We expect this algorithm to automatically set an "out of specification" flag against either NS of 

two groups when some arbitrary observation data is calculated to classify. Implausible observation 
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data, such as outliers, measurement error data, or data significantly deviating from the normal 

observation data, have higher MD Scores (MDS) than those within NS. Mahalanobis-Taguchi System 

(MTS), including some modified and expanding MD versions, is a well-established technique to detect 

implausible observations that deviate from the normative data along the statistically analyzed space 

and well-setting thresholding. Many MTS applications have been reported in aerospace, medical 

diagnostics, manufacturing, structural damage detection, environmental risk management, and public 

administration. [27-33]. According to previous research, Ramlie et al. [34] said, “In MTS, to classify 

any two or more samples among the sample groups, MD values for each sample are calculated based 

on their common feature datasets.” The MD values computed are viewed as points in the high 

dimensional space, and they represent the distances of the corresponding samples from each in a 

univariate scale; Ramlie et al. [34] also stated, “an accurate classification result depends on a threshold 

value or a cut-off MD value that can effectively separate the two classes. Obtaining a reliable threshold 

value is very crucial”. Their study compared four thresholding methods commonly used in MTS 

methodology (probabilistic thresholding method [35], Type-I and Type-II errors method [36], ROC 

curve method [37], and control chart method via Box-Cox transformation [38]. They employed 

multiple data sets and concluded that none of the four thresholding methods outperformed one of the 

others in  most of the datasets. The effective use of the four thresholding methods to produce 
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promising classification performances is dataset-dependent. Given that this study used the AUC of the 

ROC curve method to validate the binary classification model and algorithm, our MD threshold setting 

was also validated by the ROC curve method.  

 

I-5. Study Objectives 

This feasibility study aimed to determine if DTW-based voice biomarkers could effectively and 

significantly differentiate between mild and moderate illness I for COVID-19 through binary 

classification.  

 

II Methods 
II-1. Study Design 

We conducted a cross-sectional study using the voice samples of patients with COVID-19. 

 

II-2. Ethics Approval  

The study was conducted per the Declaration of Helsinki. Further, the Ethics Committee of Kanagawa 

University of Human Services approved the study (SHI 3-001, dated May 27, 2021, and SHI 26, dated 

November 25, 2021). Informed consent was obtained from all participants involved in the study. 

 

II-3 Participants  

This study recruited participants through a brochure distributed exclusively to patients with COVID-
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19 aged 20 years and above. In particular, those who tested positive for SARS-CoV-2 in PCR testing 

recuperated at designated facilities or homes in Kanagawa prefecture, Japan, between June 2021 and 

March 2022. Patients who consented to the study’s objectives were requested to register for 

participation using the QR code on the brochure through their smartphones. The participants were 

asked to provide data on their daily vital signs, including voice recordings during recuperation. 

Nonetheless, they could withdraw from the study (opt-out) anytime. A ¥1000 (US $6.68) Amazon gift 

card was given to participants as compensation. This study only included patients with mild illness or 

moderate illness I. Thus, for those who did not require hospitalization, patients with moderate illness 

II were not included. The participants were categorized into mild and moderate I groups, as illustrated 

in Table 1. 

 

II-4 Data Collection  

Those who agreed to participate were asked to install a smartphone app and enter their basic 

information, vital signs data (temperature and SpO2), symptom scores, and voice recordings on the 

first day of recuperation. From the second day onward, the participants were required to enter their 

vital signs data, symptom scores, and voice recordings daily until the last day of recuperation. Voice 

data were stored with text data indicating the symptoms and vital signs on a highly secure dedicated 

server. The voice recordings were in the WAV format with a sampling rate of 48 kHz and a bit depth 
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of 16 bits using the three long vowels /a/, /e/, and /u/. Participants were asked to explain their reasoning 

if they wished to withdraw from the study. Table 2 shows the timing and data entry items of the 

participants. The /a/, /e/, and /u/ sounds are in many worldwide languages. Therefore, by obtaining 

samples using long vowels in these sounds, the research results are expected to be useful across 

international and regional boundaries of human races. 

 

Table 2. Timing and items for the input data and information from participants 

Timing and items Description 

Baseline  

Orientation 

 

Explain the purpose of the study and obtain participant 

consent 

Basic information Sex, Age, Symptom onset date, Diagnosis confirmation 

date, Treatment start date 

On a daily basis during recuperation  

Vitals sign data Body temperature, Blood oxygen saturation 

Questionnaire Change in symptoms, Symptomatic or not, Respiratory 

distress, Taste/olfactory disorder, Cough/sputum, 

Chest pain, Runny nose/nasal congestion, Sore throat, 

Nausea/vomiting, Diarrhea, Appetite, Fatigue, 

Headache, Joint pain, Rash, Red eyes 

Voice recording Three sustained vowels: /a/, /e/, /u/ 

Dropout during recuperation 

Dropout 
Confirm the reason for dropout from the research 
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II-5. Waveform Samples Cutout and Standardization (Paper I) 

II-5-(1) Waveform Samples Cutout and Standardization for DTW Distance 

In calculating the DTW distance, a 10-cycle waveform sample was extracted for each date from the 

participants’ long-vowel recordings in the WAV format using Audacity (version 3.1.3; Audacity 

Team) at a sampling rate of 48 kHz (Figure 2). Then, standardization was achieved along the power 

axis within the range of –1 to +1 as the maximum amplitude, and the time axis involved 1000 data 

points, multiplied by 1/48,000 seconds, considering the length of a 10-cycle waveform. R (version 

4.4.2; R Core Team) with the tuneR package (version 1.4.0) was used to read and standardize the 

WAV data. 

 

 
Figure 2. Screenshot showing 10-cycle waveform data extracted for each date from each patient’s 

voice recording of vowels. 

 

II-5-(2) Calculation of the DTW Distance for two Groups 

After standardizing the power and time of the 110 waveform samples, the DTW distance was 

calculated for each sample paired with those of the remaining 109 samples. The obtained DTW 

distances were divided into 2 categories based on 2 kinds of labels for the 109 waveform samples. 
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Therefore, each sample was assigned two variables for DTW distance. The mild group had 61 or 60 

DTW distances; the moderate I group had 48 or 49 DTW distances. The average and variance of the 

DTW distances were calculated for each group. For the mild group, the average index (i.e., the mild-

group filtering [MiF] average) and variance index (i.e., MiF variance) of the DTW distance was 

obtained. In contrast, for the moderate I group, the average index (i.e., moderate-group filtering [MoF] 

average) and variance index (MoF variance) of the DTW distance were obtained. These four indices 

were obtained from a single waveform sample. The indices for the three vowels, /a/, /e/, and /u/, were 

prepared and are represented in Table 3. Thus, 12 indices were used in the subsequent analyses. The 

two groups' average values and variances of the DTW distances were statistically investigated to 

determine whether they exhibited significant values for the 2-group classification scheme.  

 

Table 3. Twelve indices were generated from 3 vowels and 4 indices. 

Indices 
Vowels 

/a/ /e/ /u/ 

MiF_average /a/-MiF_average /e/-MiF_average /u/-MiF_average 

MoF_average /a/-MoF_average /e/-MoF_average /u/-MoF_average 

MiF_variance /a/-MiF_variance /e/-MiF_variance /u/-MiF_variance 

MoF_variance /a/-MoF_variance /e/-MoF_variance /u/-MoF_variance 

MiF: mild-group filtering, MoF: moderate-group filtering 
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II-5-(3) Waveform Samples Cutout for Jitter, Shimmer, and HNR 

Another Jitter, Shimmer, and HNR dataset was prepared for the comparison model. The identical 10-

cycle waveforms from the same 110 patients, dates, and three vowels as used for DTW-distance were 

employed to extract these three acoustic indices of jitter, shimmer, and HNR, except for 

standardization to time and power axis because standardization may result in a loss of acoustic features 

of them.  

 

II-6 Data Analysis 

II-6-(1) Linear Discriminant Analysis Considering the Average and Variance Indices of the 

DTW Distance (Paper I) 

The Mann-Whitney U test was used to determine whether any statistical significance existed between 

the mild and moderate I groups. This test was performed on 12 indices that measured the average and 

variance of the DTW distance for the 3 vowels /a/, /e/, and /u/. A significance level of 1% was 

established, with the null hypothesis of no statistical significance between the two groups. Box plots 

and linear discriminant analysis (LDA) were used to determine the indicators of the three vowels most 

effective for determining statistical significance between the two groups. The confusion matrix 

obtained from the LDA results was displayed with a specific index for the true positive rate (TPR), 

true negative rate (TNR), and balanced accuracy (BA). The boxplot function was calculated and 

plotted using the R ggplot package (version 3.4.0), and the LDA function was calculated using the R 
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MASS package (version 7.3). 

 

II-6-(2) Generalized Linear Model with the Promising Indices of DTW Distance (Paper I) 

The significant indices from the four categories of DTW distance were used to distinguish between 

severity levels (mild or moderate I). These indices were then used as explanatory variables to create 

generalized linear models (GLMs) for each vowel. A five-fold cross-validation method with 110 

waveform samples was used to train the model for each vowel, which was subsequently used to predict 

the severity classification. R was used for GLM modeling and label prediction. The pROC package 

(version 1.18.0) for R was used to obtain the receiver operating characteristic (ROC) curve and 

calculate the area under the curve (AUC). In contrast, confusion matrices were generated using the 

Caret package (version 6.0) for R.  

 

II-6-(3) Generalized Linear Model with Mahalanobis Distance 

II-6-(3)-A. Normal Space and Thresholding of Mahalanobis Distance 

When collecting observation data from the real world, but not limited to arbitrary observation data, it 

is commonly believed that the data include some amount of implausible observation, even if it is sparse. 

Some datasets for this study needed to exclude implausible observations using the MD method. Here 

is the procedure for that.  
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1. First, for the 110 patient samples, the MDSs were obtained from the two DTW-based variance 

indices, MDS1 for the MiF-Variance and MDS2 for the MoF-Variance, respectively.  

 

2. The mean and variance-covariance for the mild and moderate I groups were calculated, and the 

MDS was calculated as the distance from the norm. For this calculation, the “Mahalanobis” 

function contained in the "stats" Package (ver. 3.6.2) of R was applied.  

 

3. Each sample was assigned MDS coordinates (MDS1 and MDS2), allowing a review of the 

distribution on a two-dimensional plane. The center coordinates (Mu1 and Mu2), and the level 

envelope of the NS in an ellipse is displayed alongside each group’s coordinates. If the level 

value is set to 90%. 90% of the data points can be found within an ellipse.  

 

4. We set the NS level at 90% for both groups and observed how much the two NSs overlapped on 

the graph. We also ensured that most MDS points outside the NSs could be taken as implausible 

observations. If not, we adjusted the NS level by 5% up or down to reach an optimal level. We 

expected the NS to include as many normal samples as possible at this level while excluding 

most implausible observations. Finally, each group was given its own MD thresholding (MDt) 
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corresponding to the given NS level. The dataset of 110 patient samples was reconstructed by 

excluding MDSs with values more than the MDt. 

 

5. This study analyzed two GLM models: one that used MDS1 and MDS2 in an optimized dataset 

and another that utilized DTW-based variance indices. To determine the accuracy and 

performance of both models, we used the confusion matrix and AUC of the ROC curve. If the 

new model shows improvement in these areas, we can conclude that the optimization of NSs 

was successful. We defined the most optimized normal space as the silver standard of normal 

spaces (SSNS) for this study, which provides the standard parameters of the center of 

coordination and the variance-covariance information to classify arbitrary datasets. 

 

II-6-(3)-B. MDS-based Generalized Liner Model to Classify Arbitrary Observation Data 

The procedure for handling arbitrary observation data using the DTW Distance and SSNS is as follows. 

1. Using the center coordinates, variance and covariance information of SSNS, generate MDS1 

and MDS2 from the variance indices of an arbitrary dataset. We plotted them on a 2D 

coordinate system, including the center points and an ellipse envelope displaying the NSs of 

arbitrary observation to analyze the distribution of all MDS points, including implausible 

observations. 
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2. To obtain the most optimized MD thresholds (MDt) for the mild group (K1) and the moderate 

I group (K2), we shifted the level of the NS of the arbitrary dataset from 100% to 65% in 5% 

increments. We then determined the optimized combination of K1 and K2 by examining a 

line graph of the MDt (K1 and K2) to the NS level. The dataset of arbitrary observation was 

reconstructed for the severity classification by excluding the MDSs with values more 

significant than the MDt (K1 and K2). 

 

3. The MDS-based GML model was generated based on the probability-of-fit and cut-off values 

obtained from SSNS and then used to classify the arbitrary observations data, which were 

within the designated level of NSs.  

 

4. We evaluated the results’ balanced accuracy, sensitivity, specificity, and AUC using 

confusion matrices and ROC curves. We aimed to determine whether MDt could effectively 

filter out the implausible observations of arbitrary observation data, resulting in reasonable 

NSs finally used for a binary classification. 

 

5. Finally, we analyzed the MDS information beyond MDt individually to determine if it was 

due to patient bias, model limitations, or unlikely observations with no reason. 
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II-6-(4) Generalized Linear Model using Jitter, Shimmer, and HNR Indices 

The significant difference between the two was tested using the Mann-Whitney U test. The 

significance level was set to 1%, with the null hypothesis of no significance between the two groups. 

The distribution of severity labels for each factor is also displayed as boxplots per factor and vowel. 

A GLM model with three variables–jitter, shimmer, and HNR–was created using 5-fold cross-

validation and evaluated using the ROC curve/AUC and confusion matrix. The R packages used to 

extract jitter, shimmer, and HNR indices from the waveform samples were the Sonicscrewdriver 

package (ver. 0.0.4) and the Soundgen package (ver. 2.5.2). 

 

III Results 
III-1 Participants 

In June 2021 and March 2022, approximately 540,000 patients with COVID-19 were recorded in 

Kanagawa prefecture. After requesting approximately 10,000 individuals to participate, our study 

recruited 295 participants in the same period. Of these, 291 were eligible to participate because 

participants who did not meet the inclusion criteria, such as minors, those with invalid data registration, 

or those who withdrew midway through evaluation, were excluded. 

 

A total of 74 participants who reported no symptoms of coughing, throat pain, chest pain, or SoB 
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during recuperation were assigned to the mild group. Of the 217 participants who reported any 

symptoms, 68 with symptoms of SoB were posted to the moderate I group. Of the 149 participants 

who reported symptoms other than SoB, 6 with SpO2 values of less than 96% were posted to the 

moderate I group, and 143 participants who reported SpO2 values of no less than 96% were posted to 

the mild group. The 291 participants were classified into 2 groups: 217 as mild and 74 as moderate I. 

Figure 3 shows a flowchart of study participation. 

 

The primary periods of infection in Japan were during the Delta period, from July to December 2021, 

and the Omicron period, from January to June 2022. According to previous reports [39, 40], COVID-

19 exhibits varying levels of infectivity, severity, and symptoms, depending on the type of mutant 

strain present. We identified the time of infection in Japan and carefully matched the 291 study 

participants who had already been labeled into 2 groups. Table 4 shows the attribution matrix for the 

participants by the time of infection, sex, and severity. Table 5 shows the attribution matrix for the 

same sample based on the time of infection, sex, and age group. Finally, 110 participants (61 with 

mild illness and 49 with moderate illness I) were included in the study. 
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Figure 3. Flowchart showing classification of 291 participants into the mild illness and moderate 

illness I groups. “Four symptoms” refers to the 4 major symptoms: coughing, throat pain, chest pain, 

and shortness of breath. SpO2: oxygen saturation. 

 
Table 4. Participants’ attribution matrix by the time of infection, sex and severity(n=110) 

Severity Delta period a (n=46) Omicron period b(n=64) 

Mild illness (n=61) 

Male 

Female 

Total 

  

14 16 

13 18 
27 34 

Moderate illness I (n=49) 

Male 

Female 

Total 

  

10 16 
9 14 
19 30 

a Delta period from July 2021 to December 2021.  

b Omicron period from January 2022 to June 2022. 
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Table 5. Participants’ attribution matrix by the time of infection, sex, and age group (n=110). 

Age group (years) Delta period a (n=46) Omicron period b (n=64) 

20-29 

Male 

Female 

Total 

  

9 10 

16 15 
25 25 

30-3  

Male 

Female 

Total 9 

  

4 9 

1 9 
5 18 

40-49 

Male 

Female 

Total 

  
7 6 
2 5 
9 11 

50-59 

Male 

Female 

Total 

  
3 4 

3 3 
6 7 

60-69 

Male 

Female 

Total 

 0 

0 2 

0 0 
0 2 

≥ 70  

Male 

Female 

Total 

  
1 1 
0 0 
1 1 

a Delta period from July 2021 to December 2021.  

b Omicron period from January 2022 to June 2022. 
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III-2 Linear Discriminant Analysis with DTW Distance Indices (Paper I) 

III-2-(1) Distribution of the DTW Distance Indices 

Table 6 displays the two groups’ Mann–Whitney U test results based on three vowels and four 

indicators. Of the 12 indices, 6 were found to be significant; they included /u/-MiF average, /a/-MiF 

variance, /e/-MiF variance, /a/-MoF variance, /e/-MoF variance, and /u/-MoF variance. The only 

significant index among the average indices was /u/-MiF average, while /u/-MiF variance was the only 

insignificant index among the variance indices. This indicates that the variance indices were more 

significant overall. Figures 4 and 5 illustrate the distributions of MiF average and MoF average, as 

well as MiF variance and MoF variance, for the two groups. 

 

Table 6. Results of Mann-Whitney’s U-test for mild illness and moderate illness I group classification. 

Indices 
Vowels, P values 

/a/ /e/ /u/ 

MiF a _average .03 .71 <.001 

MoF b _average .60 .43 .03 

MiF_variance <.001 <.001 .45 

MoF_variance <.001 <.001 <.001 

a MIF: mild-group filtering 

b MoF: moderate-group filtering 
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Figure 4. Distribution in the 2 groups of the average index for the dynamic time warping distance 

(MiF average and MoF average). MiF: mild-group filtering; MoF: moderate-group filtering. 

 

 
Figure 5. Distribution in the 2 groups of the variance indices for the dynamic time warping distance 

(MiF variance and MoF variance) *P<.001. MiF: mild-group filtering; MoF: moderate-group filtering. 
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III-2-(2). Results for Linear Discriminant Analysis 

Figure 6 shows a scatter plot of the average indices, and Figure 7 shows a scatter plot of the variance 

indices of the DTW distance, along with the confusion matrix, TPR, TNR, and BA values of the LDA. 

The straight line represents the discriminant line obtained using LDA. The variance indices of the 

DTW distance provided superior results for the classification indicators of the confusion matrix, 

including TPR, TNR, and BA, compared to the average indices. The ease of classification can be 

visually verified by observing the plots achieved via LDA. 

 

 

Figure 6. Linear discriminant analysis results and confusion matrix of the MiF average and MoF 

average indices. BA: balanced accuracy; MiF: mild-group filtering; MoF: moderate-group filtering; 

TPR: true positive rate; TNR: true negative rate. 
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Figure 7. Linear discriminant analysis results and confusion matrix of the MiF-variance and MoF-

variance indices. BA: balanced accuracy; MiF: mild-group filtering; MoF: moderate-group filtering; 

TPR: true positive rate; TNR: true negative rate. 

 

III-3. Generalized Linear Model with Promising Indices of the DTW Distance (Paper I) 

We used the variance indices of the DTW distance as predictors of the GLM model because they 

achieved better classification performances than the average indices. Figure 8 shows the ROC and 

AUC values of the GLM model for each vowel with the confusion matrix, including the TPR, TNR, 

and BA data. The models of all three vowels exhibited high performance regarding the AUC and mid-

to-high accuracy for TPR, TNR, and BA. 
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Figure 8. ROC/AUC results of the generalized linear model with confusion matrices for the mild-

group filtering variance and moderate-group filtering variance indices. AUC: area under the curve; 

BA: balanced accuracy; FPR: false positive rate; TPR: true positive rate; TNR: true negative rate; 

ROC: receiver operating characteristics curve. 

 
III-4. Generalized Linear Model with Mahalanobis Distance 

III-4-(1) Silver Standard of Normal Spaces (SSNSs) and Thresholding of Mahalanobis 

Distance (MDt) 

Using the MD method, we used the /u/ variance indices of DTW distance as a representative example 

for generating SSNS and MDt. It showed the highest classification accuracy in the GLM (88.0%, 

Figure 8). Our goal is to observe the overlap between the SSNSs of the two groups and the number of 

out-of-SSNS observations generated to the given SSNS level (e.g., 85%), as shown in Figure 9. 
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Figure 9. Distribution of the variance indices of DTW distance with 85 % of SSNS level.   

 

We utilized the MD method to transform the variance indices of DTW distance into MD Scores (MDS). 

Then, we applied the same level of ellipse equation range (85%) to the distribution state of 100% of 

MDSs for comparison as is Figure 10. The figure shows that the distribution state of 100 % MDSs for 

each group and the positioning of each SSNS.  
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Figure 10. Distribution of MD Scores (MDS1 and MDS2) with 85% of SSNS level. 

 

An example GLM model was generated corresponding to SSNS (85% level), and the model 

performance of binary classification is shown in Figure 11 as ROC curve and AUC, and the model 

accuracy is tabulated in Table 7 just for reference. For this model, out-of-SSNS MDSs were excluded 

by MDt parameters. 
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Figure 11. A representative example of a ROC curve with two SSNS levels of 85%. 

 
Table 7. A representative example of the model accuracy with two SSNS levels of 85%. 

 

 

 

Next, determined each group's optimal combination of levels. This involves selecting the appropriate 

level, removing implausible observations outside the SSNS at the given level, and maintaining the 

number of samples within the given levels as many as possible. We calculated two MD thresholds (k1 

for the mild group and k2 for the moderate I group), the balanced accuracy, sensitivity, specificity, 

and AUC for each of the given levels of SSNS, which was shifting from 70% to 100% in 5% 

increments and plotted, as shown in Figure 12. Our analysis concluded that around 98% contributed 

to the best balance of the four model accuracy indices of AUC, sensitivity, specificity, and balanced 

Model Accuracy (%) 

Sensitivity 89.8 

Specificity 93.4 

Balanced Accuracy 91.6 
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accuracy for SSNS. This level was used to finalize the SSNSs using MDt for the mild group (k1) at 

9.49 and MDt for the moderate I group (k2) at 8.30. 

 
Figure 12. Transient of MDt (k1, k2) and model accuracy indices for each level for SSNS. 

 

The SSNS for this study for the /u/ vowel was described as follows: 

1. The ROC Curve (Figure 13) has an AUC of 98.0% and a balanced accuracy of 92.4%.  

2. The model accuracy is shown in Table 8 with a sensitivity of 89.8%, specificity of 95.1%, and 

balanced accuracy of 92.4%.  

3. Figure 14 shows the distribution state of 109 MDSs fitting the SSNS.  

4. The only MDS excluded from the SSNS was one MDS with ID #02F618 and a mild label, as 

shown in Figure 15. 
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Figure 13. ROC curve of the GLM model with the SSNS 

 
Table 8. The model accuracy with the SSNS. 

 

 

 

 

 
Figure 14. The state of fitting MDSs for each group at 98% of the NS level. 

 

Model Accuracy (%) 

Sensitivity 89.8 

Specificity 95.1 

Balanced Accuracy 92.4 
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Figure 15. Identifying the out-of-SSNS MDSs 

 

III-4-(2) MDS-based Generalized Linear Model to Classify Arbitrary Observation Data 

Figure 16 presents the distribution of DTW_distance variance indices and the 85% of NS for the mild 

and moderate I groups in arbitrary observations and indicates the location of the SSNS center 

coordinates in this graph. The arbitrary observation dataset means all observation data other than the 

110 samples used to SSNS, with a sample of 172 (mild: 94, moderate I: 78) for /u/. This graph was 

prepared as a comparison of the state of the distribution when DTW-variance indices were converted 

to MD scores. 
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Figure 16. Distribution of DTW variance indices of arbitrary observation for each group. 100% of 

MDSs (172) are plotted. Two 85% ellipse equation ranges are reference only. 

 

We utilized the MD method to transform the variance indices of DTW distance into two MD Scores 

(MDS1 for MiF_Variance and MDS2 for MoF_Variance) by applying the center coordinates and 

variance/covariance information of the SSNS to the arbitrary dataset. The distribution state of MDS is 

shown in Figure 17. 
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Figure 17. Distribution of MD Scores (MDS1 and MDS2) with 85% of NS level of arbitrary 

observations. 

 

Figure 18 shows transitions in the MD threshold (MDt), AUC, balanced accuracy, sensitivity, and 

specificity for each group when the NS level of arbitrary observations was changed from 100% to 65% 

by 5%. Based on the insights obtained from Figure 18, the mild group’s NS level was 85% 

 (MDt of 8.64), and the NS level of the moderate I group was set at 75% (MDt of 3.95). 

 

1. The rate of change in K1 showed a gentle slope when the NS level of the mild group was in 

the range of 80 to 90% (Figure 18, left). In addition, the specificity, the detection rate of the 

mild group, also showed a gentle slope of around 90% as the NS level is between 85 and 75% 

(Figure 18, right). Therefore, the greater NS level for the mild group between these two ranges 

is 85%. 
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2. The slope of the K2 rate changed to gentle after 90% of the NS level, allowing us to judge 

that implausible observation data were well filtered out (Figure 18, left). In addition, the 

sensitivity, which is the detection rate of the moderate I group, continuously increased as the 

NS level moved from 85 to 65% (Figure 18, right).  Therefore, the NS level of the moderate 

I group needs to be 75% or less if you want 80% or more of the sensitivity of the model. 

 
Figure 18. Transient of MDt (K1, K2) and model accuracy indices for each NS level of arbitrary 

observation datasets. 

 

The ROC curve generated by the MDSs was extracted from the arbitrary observation dataset (Figure 

19). Table 9 shows the confusion matrix results. Figure 20 shows the distribution of the 147 data fitted 

to the NS. Figure 21 maps implausible observations with wrong predictions against the true labels (25 

observations, 14.5% of 172 whole arbitrary samples). The model's classification performance for the 

MDSs fitted to the NS was 93.9% of AUC, indicating high performance, and the balanced accuracy 

of the model was 85.0% (sensitivity 81.3%, specificity (88.6%), which is considered a reasonable 
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result. 

 

 
Figure 19. ROC curve of MDS fitted to the NS of the arbitrary observations. 

 
Table 9. The model accuracy of arbitrary observation dataset with the gold NS method. 

 

 

 

Model Accuracy (%) 

Sensitivity 81.4 

Specificity 88.6 

Bal.Acc 85.0 
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Figure 20. The distribution state of the MDSs fitting to the NS of each group. 

 

 
Figure 21. Mapping of implausible observations with wrong predictions against the true labels. 

 

The table in Appendix 1 displayed incorrect moderate I predictions for true mild labels. It included 14 

samples, and the associated distribution mapping is shown in Figure 22. The table in Appendix 2 

displayed incorrect mild predictions for the true moderate I label. It included 11 samples, and the 
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associated distribution mapping is shown in Figure 23. Our best insights obtained from the related 

tables and figures were described in the “Possibility or Assumption” column of tables in Appendix 1 

and 2. We can summarize why the label mismatching happened in 25 cases as follows: 

(1) Patient bias (11 cases)  

(2) Current model limitation (12 cases) 

(3) Unknown - yet implausible observation (2 cases)  

 
Figure 22. Mapping of the wrong 14 predictions as moderate I against true mild labels. 
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Figure 23. Mapping of the wrong 11 predictions as mild against true moderate I labels 

 

III-3 Generalized Linear Model with Jitter, Shimmer, and HNR Indices 

Table 10 presents the results of the Mann–Whitney U test for each of the three vowels and each factor 

for the two groups’ classification. No index has a significance level of 1%. Figure 24 presents the 

distribution of the two groups for the jitter, shimmer, and HNR indices.  

 

Table 10. Results of Mann-Whitney’s U-test for Results of Mann-Whitney’s U-test for mild illness 

and moderate illness I group classification, using Jitter, Shimmer and HNR 

Indices 
Vowels, P values 

/a/ /e/ /u/ 

Jitter .18 .76 .39 

Shimmer .07 .72 .55 

HNR .67 .99 .60 
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Figure 24. The boxplot of the two groups shows no significant difference in the data distribution. 

MILD: mild group, MOD1: moderate I group. 

 

Figure 25 presents the predictive ability of the GLM model for each vowel in terms of ROC curves 

and AUCs, with Table 11 of the confusion matrix with sensitivity, specificity, and balanced accuracy. 

GLM using one-dimensional information of Jitter, Shimmer, and HNR as predictors did not work well 

in classifying mild and moderate I groups.  
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Figure 25. The result of the GLM model’s ROC/AUC using Jitter, Shimmer, and HNR indices. 

 

Table 11. The model accuracy of GLM with Jitter, Shimmer, and HNR indices 

Model accuracy 
Vowel, (%) 

/a/ /e/ /u/ 

Sensitivity 53.1 30.6 24.5 

Specificity 67.2 44.3 65.6 

Balanced Accuracy 60.2 37.5 45.0 

 

IV. Discussion 
IV-1. Principal Results 

This feasibility study demonstrated that the DTW distance-based voice biomarkers generated by the 

GLM had a balanced accuracy ranging from 80.2% to 88.0% and a high model performance indicated 

by the AUC ranging from 86.5% to 96.5% for 3 vowels of 110 samples of patients with COVID-19 to 

classify mild and moderate illness I. Furthermore, the two-story classification model, an improved 

version supported by MD thresholding to deal with arbitrary observation that may include a few 

implausible observations, achieved a reasonable model accuracy of 85.0% and high performance of 
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93.9% for arbitrary observation data of /u/ vowel. 

 

IV-2. Comparison with Prior Works 

IV-2-(1). Key 1D Features of Acoustic Parameters 

Sondhi et al. [15] and Pah et al. [41] found that classifying subjects with and without COVID-19 was 

possible using jitter, shimmer, and HNR indices. However, they did not demonstrate classification 

using models incorporating these parameters. Pah et al. [41] stated, “The statistical analysis and SVM 

classification indicated that the voice features of sustained phoneme corresponding to vocal tract 

modulation (Mel Frequency Cepstral Coefficient (MFCC), Formants, Vocal-tract Length, and 

Intensity-SD) could potentially be adopted as a COVID-19 biomarker compared to the features of 

vocal fold vibration (jitter, shimmer, pitch, HNR, and NHR)” [41]. This suggests that a simple model 

using only jitter, shimmer, and HNR cannot differentiate between participants with and without 

disease. Therefore, machine learning and deep learning approaches are essential for performing 

pathophysiological analyses such as classification, presence or absence determination, and monitoring 

using key 1D features of acoustic parameters, such as MFCC and formants (Paper I). Several scholars 

have already performed such approaches with significant results  [41, 42].  Omiya et al. [42] 

developed a voice marker using a machine-learning algorithm model with LightGBM and five-fold 

cross-validation in one instance. This resulted in an accuracy rate of over 88% and AUC in 
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distinguishing between “asymptomatic or mild (symptom)” and “moderate I (symptom)” by using 

three types of sustained vowels - /a/, /e/, and /u/. The speech recordings generated 13,998 types of 1-

dimensional features. Nonetheless, only the features selected to null importance were those related to 

MFCC (Mel-frequency Cepstral-Coefficients), auditory spectrum, and magnitude spectrum, which 

included five types for /a/, 8 for /e/, and 16 for /u/. Thorough statistical analysis for feature selection 

was made to avoid overfitting the model result [42]. 

 

IV-2-(2) Two-Dimensional Feature Matching of DTW Algorithms  

Conversely, the DTW score of 2D-feature matching was a simple and significant way compared with 

the ML approach using key 1-dimensional acoustic parameters. In particular, the DTW variance 

indices significantly differed from the average indices (Paper I). The difference between the two 

categories discriminated by the DTW variance became more pronounced in the distribution map in 

Figure 20, where the parameters were converted to MD scores and showed the distribution trend of 

the two Normal Spaces. The reason for this is considered as follows. Moderate illness I group spreads 

over a wide range because we assumed the patients have various kinds of combinations of swelling 

location and airflow intensity. Conversely, the distribution pattern of the mild illness group is relatively 

condensed around the center of gravity because they have less swelling or inflammation, and maybe 

airflow intensity is considered stable. Our discovery of “DTW variance indices” was “a novelty point” 
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in this study to make a binary classification simple and significant. However, the advanced model 

using 2D-features has not yet been developed to classify coronavirus strains or to infer mechanisms 

such as swelling or lowered airflow using voice changes to date. In addressing this issue, machine 

learning–based voice analysis systems that focus on learning 1D parameters, such as spectral and 

prosodic speech features [41-48], may bring quick results. To the best of our knowledge, the paper I 

is the first published attempt to use DTW to classify a disease severity from the patient vowels. 

 

 

IV-2-(3). Effectiveness of MD method 

In not a few studies, including this study, where sample size cannot increase easily, noise data such as 

outliers, patient bias, and measurement errors would affect the accuracy or performance of the 

classification model. Since the MD score corresponds to the distance from the center of gravity of 

each group, by appropriately tuning the threshold of MDS, it is possible “objectively” to identify data 

belonging to the Normal Space (NS) or not. Taking this concept, the MD method is a very practical 

pre-processing method to filter out the noise data from the given real-world datasets, which most likely 

include some amount of noise [27]. By using this method of filtering out some outliers, we were able 

to judge the model's accuracy much better. Furthermore, by applying the mathematical codes 

(variance/covariance matrix and center of gravity), which were extracted from the SSNS (Silver 
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Standard Normal Space) for the model predictors, we had the model generalized to handle any 

arbitrary datasets. 

 

IV-2-(4) Meta-Information for the MDS with Wrong Label and Implausible Observations  

 

Data with MDS greater than the MDt were considered implausible observations and set apart from 

standard classification. The supplementary information attached to the excluded MDS revealed the 

details of the patient's conditions, which might cause implausible observation data. For example, (1) 

a one-day moderate I label suddenly appeared in the middle of a week-long mild condition, (2) a series 

of actual mild labels with fever were predicted moderate I, and (3) a mild label appeared on the 

following day of a series of moderate I was predicted moderate I, among others. The data suggest that 

about half of the cases included patient bias due to subjective feelings toward symptoms and a 

disposition to endure. This study observed 11 cases of wrong label predictions and two instances of 

outliers with unknown origin, which could be attributed to patient bias. If we accept a 7.7% (13 cases 

out of 172) inclusion rate for implausible observation, the initial NS level for eliminating implausible 

observations from arbitrary observation datasets should be reasonably set at approximately 90–95%. 

However, if the sample size is small, we may need to squeeze the NS level down to 75%, as we 

experienced in this study, where 12 wrong labeling of 172 (7.0%) were observed. It was considered a 
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model limitation because no relation to implausible observation was found in the patient’s incidental 

status. 93% of AUC seems to be near the upper limit of the model performance of this method. Suppose 

the MDt was set higher in the classification of arbitrary observation datasets. In that case, some 

implausible observations might remain in the MDS predictors that generate the GLM, resulting in poor 

model performance or classification accuracy. Conversely, if the MDt were set to minor, the number 

of objects that could be classified would be minimal, resulting in poor model versatility for 

classification with arbitrary observations. Therefore, finding the appropriate MDt for a given arbitrary 

observation dataset is essential in this two-story classification. 

 

IV-2-(5). Advantages of the Standardization of Waveform Samples 

By standardizing the time and power axes of the waveform samples in the DTW algorithm before 

computing, the fundamental frequency (F0) and volume were consequently transformed as parts of 

the elements forming a 10-cycle waveform in the unit envelope. Confounding factors derived from 

fundamental frequencies that vary by sex and age can be avoided as much as possible in advance. 

Thus, allowing the DTW distance's direct evaluation of the classification results [13,42,49,50]. This 

study examined 110 wavelet samples to determine the coefficient of variation (CV) of F0 estimates 

before and after standardization. We aimed to analyze the variety of F0 distribution based on sex and 

age groups. The results indicated that the CV of the wavelets without standardization ranged from 
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10.31% to 11.4% for the 3 long vowels /a/, /e/, and /u/, which is considered a significant confounding 

factor. However, after standardization, the CV ranged from 0.81% to 2.4%, significantly reducing and 

effectively minimizing confounding factors. Appendix 3 provides more details and comparison figures 

(Paper I). 

 

IV-2-(6) Why Select a 10-cycle Waveform as a Unit Sample? 

Our previous pilot study using the DTW algorithm to differentiate between participants’ voices with 

and without COVID-19 was investigated using different waveforms with 1, 3, 5, 10, 20, 30, and 50 

cycles. Among these waveform cycles, 10 and 20 cycles resulted in reasonable discrimination between 

the subjects with and without COVID-19 for all 3 participants tested. (A summary of the test results 

is shown in Appendix 4.) We selected a 10-cycle waveform rather than a 20-cycle waveform to reduce 

the total computing cost incurred when using the DTW algorithm as much as possible (see the section 

“Computing Cost”) (Paper I). 

 

IV-2-(7) Robustness to Noise 

While recent smartphones have improved recording features that can aid in voice analysis [51], it 

should be noted that the environmental noises present during the recording process were not 

completely controllable because the voice samples used in this study were self-recorded by the 
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participants with their smartphones. As Qi [52] reported, “DTW was evaluated using both synthetic 

and natural voices, and significant reductions in noise were achieved.” Given that the DTW distance 

is considered to be robust to noise, it may be more practical when used for classification purposes with 

voices obtained from the real world compared to acoustic parameters such as jitter, shimmer, and HNR, 

which are considered to be sensitive to environmental noise [8,30] (Paper I). 

 

IV-2-(8) Sample Size Consideration 

There are known statistical correlations between significance level, power, effect size, and sample size 

[53]. We tested the validity of the sample size used for 110 participants (61 in the mild group and 49 

in the moderate I group) in this study. We calculated an effect size of 0.666 with the significance level 

of 1% used in this study and a power of 0.8, which generally meets requirements from a statistical 

point of view [54]. The pwr package (version 1.3.0) of R was used for the calculation. A Cohen d 

score of 0.5 is regarded as a medium effect size, and 0.8 is considered a large effect size [55]. Therefore, 

we believe the sample size used in this study was appropriate because the effect size of 0.666 is 

between medium and large. (These validation processes are disclosed in Multimedia Appendix 5.) 

(Paper I) 
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IV-2-(9) Future Expectations 

DTW distance–based voice biomarkers may effectively supplement pulse oximeters as an objective 

indicator when distinguishing moderate illness I from mild illness among patients during recuperation. 

Even if pulse oximeters are scarce, this biomarker can be accessed through a patient’s smartphone. 

Suppose persons with disease recuperating at home can detect a worsening of symptoms to moderate 

illness I based on changes in their voice. In that case, they can determine whether they should seek 

medical care. Additionally, this system may allow health care providers to use voice biomarkers in 

addition to body temperature and pulse oximeter readings as objective and quantitative indicators to 

diagnose worsening symptoms and expedite inpatient treatment appropriately. Fischer et al. [56] said 

that “implementing vocal biomarkers in a digital solution for remote patient monitoring of frequently 

reported symptoms of COVID-19 is highly interesting.” Utilizing voice biomarkers via smartphones 

is a convenient method of remotely gathering diagnostic information, which can help to reduce patient 

bias towards physicians. This approach is non-invasive and less time-consuming than responding to a 

daily questionnaire, making it less burdensome for patients (Paper I). In addition, it is highly expected 

that voice biomarkers will be implemented in some future medical settings, such as online medical 

treatment. If advanced models can go beyond the current skill of a binary classification on the disease 

severity and develop the skill of several pathology estimations, such as swelling condition, airflow 

intensity or phlegm status and so on, the voice biomarkers would bring clinical significance and value 



54 

 

as digital health devices. Although cost estimation is not possible yet today to develop such advanced 

skills for voice biomarkers, it is necessary to continuously verify various correlations with images and 

clinical data capturing upper respiratory tract and lung conditions, as well as with large amounts of 

voice recording data.  

 

Suppose this algorithm were to be implemented in society as a smart phone application. It is first 

necessary to prepare a demonstration model of a system that processes the recorded voice algorithm 

in the cloud and simultaneously delivers the results to the patient and the doctor in charge. Such a PoC 

(proof-of-concept) approach would require the cooperation of demonstration system facilities owned 

by Kanagawa Prefecture research institutes or private entities. In this PoC, the communication speed 

between the smartphone and the cloud and the quality of voice recordings would also need to be 

validated. Moreover, although the algorithm will initially be built based on SSNSs (Silver Standard 

Normal Spaces) related to the regions, including overseas countries and time of period, if there is room 

to build GSNSs (Gold Standard Normal Spaces) from multiple SSNSs, the algorithm can be 

significantly simplified, and the computational cost can be reduced.  

 

Since the /a/, /e/, and /u/ vowels employed in this study are found in many languages spoken worldwide, 
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the research results can be deployed usefully across international and regional boundaries of human 

races. 

 

IV-3. Limitations 

IV-3-(1) Computing Cost 

In this study, our approach involved standardizing waveform samples, comprehensively computing 

the DTW distance for each sample, and subsequently using the resulting indices to determine the 

severity of illness using the GLM. However, this approach is computationally expensive, making it 

unsuitable for integration into standalone smartphone applications. Nevertheless, it can be used as a 

cloud application on a network. Despite some limitations, significant advancements in network 

transmission speed and information technology suggest that it may soon be practically applicable. 

Another potential solution for reducing computation time is to make the gold normal spaces of DTW 

distance-based indices fit for data diversity by reading more samples. 

 

IV-3-(2) Patient Bias 

Although the definition of moderate illness I used in this study is based on pulse oximeter readings 

(SpO2 93–96%) or subjective reports from patients of their clinical condition (i.e., SoB, as shown in 

Table 1), errors during labeling of the voice samples due to patient bias may have occurred as different 

individuals may have varying methods of describing the sensation of SoB. For example, the patient 
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with ID.01M reported SoB on day 5 only during 13 days of recuperation. During the period, no SpO2 

lowering (< 96) was reported, but some fever (> 37.5) was reported from days 4 to 8. The prediction 

failed on days 3, 6, 8, 12, and 13, which were predicted as moderate illness I to the actual label of mild 

illness. Figure 22 shows that five points of 01M-series MDSs are far from the NS of mild groups and 

inside the NS of the moderate I group. Due to these factors, the patient's condition may have worsened 

to moderate I until day 8, when the fever was observed. Further, the days 12 and 13 may be due to 

aftereffects. Unfortunately, this issue is challenging to overcome, considering the use of patient-

reported data. However, including objective indicators such as voice biomarkers during the diagnosis-

making process may allow for more objective labeling of data in the future (Paper I). 

 

IV-3-(3) Current Model Limitation 

We refer to the patient ID# 411F as an example illustrating the model's limitations. During its 

recuperation, patient ID#411F reported shortness of breath all six days. SpO2 reading lowered (<96) 

on days 1 and 6, with a fever (>37.5) observed on day 1. Considering all the information, there is no 

doubt that patient ID#411F was in moderate illness status from day 1 to 6. However, the model 

predicted three data as “Mild.” Figure 23 displays all of them within Mild-NS. Our best assumption 

of why such prediction errors happen is (1) model training data for moderate illness I cases were not 

good enough to make the most coverage of moderate illness I conditions, and (2) it was not done to 
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effectively reduce intersectional area between two NSs with the limited predictors of MDS based on 

DTW variance. This feasibility study was also a challenge to see how far a single DTW index actuated 

practically as a single predictor in a GLM model. By adding other parameters (e.g., body temperature) 

as some other predictors for the current GLM model, it may be improved in future trials. As of today, 

in this study, we recognize the current model limitation. 

 

IV-3-(4) Correlation with Pulse Oximeters 

The number of moderate I illnesses judged by the pulse oximeter was just 6 of 291 participants (2%), 

which is not a large enough sample size to correlate the pulse oximeter and voice biomarker 

significantly. Therefore, a new opportunity for voice recording with simultaneous pulse oximeter 

readings is needed. 

 

V. Conclusions 

Medical treatments for COVID-19 vary depending on the severity of the illness. Patients with mild 

illness may need only to recuperate at home or a designated facility, whereas patients with moderate 

illness I may need to be hospitalized. This study tested the DTW distance–based voice biomarker to 

distinguish between mild and moderate illness I. A balanced accuracy ranging from 80.2% to 88% 

was achieved, and the model performance indicated by the AUC ranged from 86.5% to 96.5% for the 
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vowels /a/, /e/, and /u/ (Paper I). In addition, the improved model equipped with the MD method was 

applied to the arbitrary observation dataset of the /u/ vowel, which was a different dataset from 110 

samples, for classification. The achievement was the model performance of 93.9% and balanced 

accuracy of 85.0%, considered reasonable for real-world datasets. This voice biomarker system is 

generalized for mild and moderate I illness severity classification. However, not all severity data were 

included in this study, so Moderate illness II and Serious illnesses are out of scope for the severity 

classification. In case of an unexpected shortage of pulse oximeters, it can be used as an alternative 

and cost-effective method for monitoring worsening medical conditions in patients with mild illness, 

recuperating at home or a medical facility. To the best of our knowledge, Paper I is the first published 

attempt to use DTW to classify a disease severity from the patient vowels.  
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MiF: mild-group Filtering 

MoF: moderate group Filtering 

MFCC: Mel-Frequency Cepstral Coefficient  

NSs: Normal Spaces 

ROC: Receiving Operator Curve 

SpO2: Saturation of peripheral Oxygen – the saturation of oxygen in the peripheral blood 

SoB: Shortness of Breath 

SSNS: Silver Standard of Normal Space 

TPR: True Positive Rate 

TNR: True Negative Rate  
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Appendix-1: (1/1) 

The Wrong Predictions as MOD1 against Actual MILD Labels, with a total of 14 Samples 

 
 
 
 
 



 
 

Appendix-2: (1/1)  

The Wrong Predictions as MILD against Actual MOD1 Labels, with a total of 11 Samples 

 



Appendix 3:  Additional Analysis for F0 Confounding (1/3) 

The fundamental frequency (F0) is known to vary with gender and age. However, 
when comparing wavelet features using the DTW algorithm, the difference in F0 is 
considered a confounding factor that makes disease severity misleading.

It is, therefore, necessary to standardize or normalize each wavelet to the time axis 
to remove a confounding factor before calculating the DTW distance. 

The figure in the next slide indicates the variety of F0 distribution by sex and age 
groups.  It also shows the effectiveness of the normalization on the wavelets that 
were used in this study.  



110 Wavelets’ F0 Distribution:  Not Normalized (left) and Normalized (right)

F0 was estimated using the Fast Fourier Transform function with additional sorting programming in R. 
110 samples of 10-cycle wavelets were subjected to F0 estimation in either state, “not-normalized,” or 
“normalize.”  The result of the Uh vowel is shown here with the Coefficient of Variance(CV), 
10.64%(not normalized) to 0.81%(normalized).  Ah and Eh are shown in the next slide.

Mean:  208.0
Standard Deviation: 22.12 
CV: 10.64%

Mean: 204.6  
Standard Deviation: 1.66
CV: 0.81%

Appendix 3:  Additional Analysis for F0 Confounding (2/3) 



110 Wavelets’ F0 Distribution:  Not Normalized (left) and Normalized (right)
_E

h
_ 

_A
h

_ 

Mean:  203.1
Standard Deviation: 2.41 
CV: 1.18%

Mean:  205.8
Standard Deviation: 23.45 
CV: 11.40%

Mean:  201.1
Standard Deviation: 4.82 
CV: 2.40%

Mean:  208.2
Standard Deviation: 21.48 
CV: 10.31%

Appendix 3:  Additional Analysis for F0 Confounding (3/3) 



Examples of 1-, 3-, 5, and 10-cycle waveforms from the same voice sample 
Non-Infected WaveformInfected Waveform

1-cycle

3-cycle

5-cycle

10-cycle

Appendix-4: Pilot Study for Adequate Wavelet Cycles (1/4)



20-cycle

30-cycle

50-cycle

Non-Infected WaveformInfected Waveform

        Appendix-4: Pilot Study for Adequate Wavelet Cycles (2/4) 
Examples of 20-, 30-, 50-cycle waveforms from the same voice sample 



• The distance between the two points “infected” (INF, red dots) and “in remission” (REM, blue dots) seems to be
adequate for discrimination in the range of 3 to 30 cycles in the three test cases (40M, 46M, 72F). Among them,
waveforms with 10 or 20 cycles were commonly discriminable distances for all three subjects. In this study, the
10-cycle waveform was selected as the unit sample waveform rather than the 20-cycle due to computational cost.

Type of cycle

Subject.ID
       Appendix-4: Pilot Study for Adequate Wavelet Cycles (3/4)
Example of Interpersonal Voice Classification using several-cycle waveforms



Envelope Resulting from Standardization to Power and Time Axis  

Subject - A Subject - B

Raw Voice Data Raw Voice DataStandardized Waveform Standardized Waveform

In
fe

ct
ed

N
on

-in
fe

ct
ed

• All unit waveform samples should be fitted within the envelope resulting from standardization to
power and time axis for better feature matching as using DTW algorithms.

• The Confounding factors of  F0 and vocal volume among the participants were avoided within the
envelope

Appendix-4: Pilot Study for Adequate Wavelet Cycles (4/4)



Appendix-5: Sample Size Consideration (1/2)

• At a significance level of 1% and a power of 0.8, each
group sample size was calculated for the range of Cohen’s
effect size from 0.5 (medium effect) to 0.8 (large effect).

• The range was from 39 each (effect size: 0.8) to 96 each
(effect size: 0.5). Each of our sample sizes (49 for MOD1
and 61 for MILD) is within this range.

• Then we calculated Cohen’s effect size using different
sample sizes of two groups and found it was about 0.666,
which was considered effective to classify two groups as
far as p-values are less than 1%.

• We concluded that the sample size we used for this
feasibility study was validated.



Cohen_d Ah Eh Uh

MiF_average 0.41 0.07 0.67

MoF_average 0.15 0.31 0.37

MiF_variance 0.74 0.78 0.14

MoF_variance 0.91 0.8 0.97

p-value Ah Eh Uh

MiF_average 0.034 0.7115 7.66E-04

MoF_average 0.6029 0.4326 0.0316

MiF_variance 2.09E-05 8.28E-05 0.4468

MoF_variance 3.95E-05 5.81E-05 2.93E-06

Appendix-5: Sample Size Consideration (2/2) 

• We calculated Cohen's effect size
(bottom left) for each index using the
P-values shown in Table 6 of the
manuscript (top left)

• The effect sizes for the variance
indices used for GLM classification
were in the high range of 0.74 to 0.97.
(except for 0.14 for the Uh-MiF-
variance)
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